
BLE (Bluetooth Low Energy)

Bluetooth Low Energy (BLE) is a low power wireless technology used to connect devices to each other, highly
targeted for applications in heartbeat sensors, smartphones, smartwatch fitness, beacons, security, and home entertainment
industries. Unlike the Bluetooth that is always on, BLE remains in sleep mode except when a connection is initiated, making
the device low power consumption. Devices that work with BLE can have two different functions on a connection: central
device or peripheral device.

Central devices: Usually, central devices receive data. Example: tablets, smartphones, computers, etc.
Peripheral devices: These are sensors and low power devices that connect to the central device.

In this tutorial, the SiP HTLRBL32L Microcontroller will act as a peripheral device that will send and receive data from
a central device, which in our case is a Smartphone. The SiP HTLRBL32L is ready for applications using Bluetooth® Low
Energy 5.2 providing excellent performance with minimum power consumption, enabling applications with years of battery
life and flexibility for the IoT (Internet of Things) ecosystem.

http://www.htmicron.com.br/


Image 1: BLE with HTRBL32L. Source: The author.



Necessary tools:

Hardware - Components

❏ HTLRBL32L board;
❏ FTDi module for connecting the board to the computer
❏ Protoboard;
❏ Jumpers;
❏ SmartPhone with BLE.

SOFTWARE:

❏ Wise Studio IDE to compile the code;
❏ Termite to visualize the board's serial;
❏ RF-flasher software to write the firmware to the board;
❏ Bluetooth test app (GATTBrowser);
❏ Git installed

1. Protocol

There are basically two important protocols in the communication between two BLE devices: GAP and GATT.

1.1 GAP Protocol:



GAP (Generic Access Profile) defines how BLE-enabled devices can become available and how these two devices can
communicate directly with each other.

1.2 GATT Protocol:

GATT is an acronym for Generic ATTribute Profile and defines the specifications for how two BLE devices transfer data
from one side to the other, using the concepts of Service and Characteristic. In this protocol, the central devices act as
clients and any peripheral device is the server.

In a simple way, the discovery of the devices is done using the GAP protocol. After discovery, the communication between
devices is completed through the GATT protocol.

2. BLE Characteristic

A Characteristic in the context of BLE represents information that a server wants to expose to a client. For example, the
heartbeat “Characteristic” represents the heartbeat monitoring in BPM of a device that can be read by a client. The
Characteristic contains other attributes, such as:

➔ Value: Characteristic’s data value.
➔ Declaration: Characteristic's properties (location, read, write, notify, etc.);
➔ Description: ASCII string that describes the Characteristic
➔ Service: And a group of Characteristics.
➔ UUID (Universally Unique Identifier): is the unique identification code of a specific Service. It can be 16 or 128 bits

depending on the service.

3. Using the Wise Studio IDE.



The tutorial will use the cloning of the “PushButton_Bluetooth” project as an example, available in the repository.
After the cloning procedure, we will use the Wise Studio IDE to compile the code. To perform this procedure, open the
“File” tab in Wise Studio, click on “Open projects from file System”. Next click on “Directory”, select the downloaded or
cloned folder and then click Finish. Next, open the “Includes” folder and find the “HT_ble_api.h” library to view the UUID
information, where we set the Service and Characteristic properties as shown in image 3.

Image 3: BLE with Wise Studio. Source: Screenshot by the author.

https://github.com/htmicron/htlrbl32l/tree/SDK/HTLRBL32L_SDK/Applications
https://www.st.com/en/embedded-software/stsw-wise-studio.html


2.1 Build Project

To compile all the code and consequently build the binary code, right-click on the main project folder and click “Build
Project”, as shown in image 4.

Image 4: Generating the binary. Source: Screenshot by the author.



3. Circuit assembly to enter record mode.

The next step is to assemble the board according to the electronic diagram shown in picture 5. The microcontroller’s
GPIO PA10 connector should be at high level, that is, connected to 3.3v on the board itself, activating the UART bootloader.

Image 5: Recording schematic. Source: Screenshot by the author.



4. Write the Code on the board.

The firmware will be written using the RF-flasher software. The procedure for writing the firmware using RF-flasher is
in the text Firmware Recording and Running Tests.

Image 6: Flashing the Firmware. Source: The author.



5. GATTBrowser - APP.

To perform the data communication test with the Smartphone, we need an application that can intermediate this
communication. Therefore, we will use GATTBrowser, a free application that uses the GATT communication protocol. On
your Smartphone, go to “playStore” and install the “GATTBrowser” application. Then open the app and activate the
Bluetooth on your Smartphone, it will scan it to find the BLE devices nearby. In our case it will find the HTLRBL32L
microcontroller, which will be identified as PushButton. In this scenario, the Smartphone acts as the client and the
HTLRBL32L microcontroller, which has the BLE communication protocol, is the server.

Image 7: PushButton. Source: The author.



6. Connecting the Smartphone with SiP HTLRBL32L

Before we proceed, open your serial terminal (Termite) to view the microcontroller data. After this procedure, click on
the button next to the “PushButton” in the GATTBrowser app and the smartphone will start connecting to the HTLRBL32L
microcontroller. It can be seen through Termite, that the microcontroller has successfully made this connection with the
SmartPhone, as shown in image 8.

Image 8: Connecting the Smartphone with SiP HTLRBL32L. Source: The author.



Once connected, it will display the list of Service and their Characteristic. We can see the Service UUID in the App.

Image 9: Service UUID. Source: The author.



7. Cellular data communication test

In the READ button the user will receive information from the microcontroller, in the Write button the user will send
information to the microcontroller, as shown in image 10.

Image 10: Mobile phone data communication test. Source: The author.



7.1 Receiving data from the microcontroller.

Start the tests by receiving string information from the microcontroller. To perform this procedure, press the READ
button and the user will receive the following message on his Smartphone, “Hello, World!” As shown in image 11.

Image 11: READ communication test. Source: The author.



7.2 Sending data to the Microcontroller.

In the Write button the user will send information to the microcontroller. We can type any sentence, for example:
“Manaus-Am”, the microcontroller will receive it through the BLE protocol.

Image 12: Writing communication test. Source: The author.



In this tutorial the basics of Bluetooth Low Energy were presented, starting with a practical example using the
HTLRBL32L microcontroller. The idea is to use BLE to send or receive sensor readings from other devices.

References

BLUETOOTH. Intro to Bluetooth Generic Access Profile (GAP). 2022. Available at:
<https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/>. Accessed on july 28th 2022.

ELECTRONICSHUB. How to use BLE in ESP32? ESP32 BLE (Bluetooth Low Energy) Tutorial. 2021. Available at:
<https://www.electronicshub.org/esp32-ble-tutorial/>. Accessed on july 28th 2022.

NOVELBITS. Basics bluetooth low energy. 2022. Available at: < https://novelbits.io/basics-bluetooth-low-energy/ >.
Accessed on july 28th 2022.

https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/
https://www.electronicshub.org/esp32-ble-tutorial/
https://novelbits.io/basics-bluetooth-low-energy/

