EVALUATION BOARD

BLE (Bluetooth Low Energy)

Bluetooth Low Energy (BLE) is a low power wireless technology used to connect devices to each other, highly
targeted for applications in heartbeat sensors, smartphones, smartwatch fitness, beacons, security, and home entertainment
industries. Unlike the Bluetooth that is always on, BLE remains in sleep mode except when a connection is initiated, making
the device low power consumption. Devices that work with BLE can have two different functions on a connection: central
device or peripheral device.

Central devices: Usually, central devices receive data. Example: tablets, smartphones, computers, etc.

Peripheral devices: These are sensors and low power devices that connect to the central device.

In this tutorial, the SiP HTLRBL32L Microcontroller will act as a peripheral device that will send and receive data from
a central device, which in our case is a Smartphone. The SiP HTLRBL32L is ready for applications using Bluetooth® Low
Energy 5.2 providing excellent performance with minimum power consumption, enabling applications with years of battery
life and flexibility for the IoT (Internet of Things) ecosystem.

http://www.htmicron.com.br/

HTLRBL32L
2 BREAKOUT BOARD V1

RX

T

PEO-ADC

Image 1: BLE with HTRBL32L. Source: The author.

Necessary tools:

Hardware - Components

HTLRBL32L board;

FTDi module for connecting the board to the computer
Protoboard;

Jumpers;

SmartPhone with BLE.

(N R Ry

SOFTWARE:

Wise Studio IDE to compile the code;

Termite to visualize the board's serial;

RF-flasher software to write the firmware to the board;
Bluetooth test app (GATTBrowser); Image 2: Components. Source: The author.
Git installed

Ay ERER Ry

1. Protocol

There are basically two important protocols in the communication between two BLE devices: GAP and GATT.

1.1 GAP Protocol:

Ravi

GAP (Generic Access Profile) defines how BLE-enabled devices can become available and how these two devices can
communicate directly with each other.

1.2 GATT Protocol:

GATT is an acronym for Generic AT Tribute Profile and defines the specifications for how two BLE devices transfer data
from one side to the other, using the concepts of Service and Characteristic. In this protocol, the central devices act as
clients and any peripheral device is the server.

In a simple way, the discovery of the devices is done using the GAP protocol. After discovery, the communication between
devices is completed through the GATT protocol.

2. BLE Characteristic

A Characteristic in the context of BLE represents information that a server wants to expose to a client. For example, the
heartbeat “Characteristic” represents the heartbeat monitoring in BPM of a device that can be read by a client. The
Characteristic contains other attributes, such as:

-> Value: Characteristic’s data value.

-> Declaration: Characteristic's properties (location, read, write, notify, etc.);

-> Description: ASCII string that describes the Characteristic

> Service: And a group of Characteristics.

= UUID (Universally Unique Identifier): is the unique identification code of a specific Service. It can be 16 or 128 bits
depending on the service.

3. Using the Wise Studio IDE.

The tutorial will use the cloning of the “PushButton_Bluetooth” project as an example, available in the repository.
After the cloning procedure, we will use the Wise Studio IDE to compile the code. To perform this procedure, open the
“File” tab in Wise Studio, click on “Open projects from file System”. Next click on “Directory”, select the downloaded or
cloned folder and then click Finish. Next, open the “Includes” folder and find the “HT_ble_api.h” library to view the UUID
information, where we set the Service and Characteristic properties as shown in image 3.

(

5 workspace - C\Users\temp\Documents\MDSDS\code\EVB\HTLRBL32L_EVB_Applications\HTLRBL32L_Applications\Applications\PushButton_LoRaWAN-Bluetooth\HT_BLE_ API\Inc\HT _ble_apih - WiSE Studio
File Edit Source Refactor Navigate Search Project Run Window Help
it BDehofin@ovevw v ivOvr Qe ™ v 4% CERUR J - -
Project < bluenrg Ip_itc | & HT ble apic /2 HT gatt db.c (5 HT ble apih ¢
1 /* Define to prevent recursive inclusion
22 #ifndef _ HT BLE_API__
23 #define _ HT_BLE_API__

& HTLRBL32L-PL
v 5 HTLRBI32L-PL
v @ Includes 2
v & C/Users Tl T e e e e S %
A HT b 26 #include "main.h"
o 27 #include "HT_push_button.h"

EHTg)| 58 sinclude "HT gatt_db.h"
C:/Ucer p
Bbluer ll[] 38 /* Defines <cmsccmacamiiomiciinesiconitinna e s s b m e s S R e e
n
' 33 #define ADV_INTERVAL_FAST_MS 100
BHLp define ADV_INTERVAL_SLOW MS 1000
HT p
R loraw * push Button LoRa+BLE Bluetooth characteristics. */
B loraw define APP_UUID @x19,0x95,8xds,0xas,@x82,8x0e,xe3, 8xa,exe2,0x11, @x77,0xes,0X20, XS5, 028, 0xa3
B fiiain idefine APP_SRV_UUID 9x19,0x96,0xd5, @xa5,0x02,0x00, Oxe3,0xa9,Oxe2,0x11,0x77, Exed, 0x20,0x55,0x2e, 8xa3
rtch

,,,
5 C:/Users onnectable (void

mode.

oid HT_BLE_SetDeviceConnectable(void);

Image 3: BLE with Wise Studio. Source: Screenshot by the author.

https://github.com/htmicron/htlrbl32l/tree/SDK/HTLRBL32L_SDK/Applications
https://www.st.com/en/embedded-software/stsw-wise-studio.html

2.1 Build Project

To compile all the code and consequently build the binary code, right-click on the main project folder and click “Build
Project”, as shown in image 4.

File Edit So Dt > indow Help
i | ® HhE LG > hd b 2] Quick
L Project Expl ¢ Open in New Window gatt db.c | HT ble api.h ¥ . @ HT gatt db.h | @ HT push button ctgh | [@ HT push buttonh | E lorawan_setup.h >
Show In Alt+Shift+W > . .
= HTLRBL32 gy API for Push Button LoRa+BLE application
S HTIRBI32 @ Copy Culéc 4 RED
o q n.com.br
R Delete Delete
Source >
ve inclusion ===s-smsemem e xf
Rename... 4
Eigiie | e N VIS NN LR RE0 Y i/
Export...
Build Project
Clean Project
,, * f

Refresh E3

Close Project
y 1ee

Close Unrelated Project . 1000

Build Confi ti > . -
R rtooth characteristics. */

uild Targets > 5 8Xxd5,0xa5,0x02,0x008,6xe3,0xa%9,0xe2 ,0x11,0x77,6xeq,0x20,0x55,0x2e,0xa
Buiild 1 15,8xd5,0xa5,0x02,8x08, Oxe3,0xa9,8xe2,0x11,0x77, Bxed,0x20,0x55, 0x2e, 8xa3
1,0X96,8xd5,0xa5,8x@2, 800, Oxe3, 0xa9, Bxe2,@x11,0x77, @xed, Bx28,0x55, 8x2e, Bxad

Index >
= T B e e e R e A R A * /
O RunAs >
% Debug As T e e e N B S PSP

Profile As » Connectable(void)

e,
Team >
Compere With >

—— - .

Image 4: Generating the binary. Source: Screenshot by the author.

3. Circuit assembly to enter record mode.

The next step is to assemble the board according to the electronic diagram shown in picture 5. The microcontroller’s
GPIO PA10 connector should be at high level, that is, connected to 3.3v on the board itself, activating the UART bootloader.

-
) L33
g 833
& o e
g PHES
s S8
5 g o
g 53522
2P o0d= n
§ 2885 %
BLE-ANT
]
; QR ——
1
CLK/USART/SP13_SCK < Tl LA - pB7-12¢_SfA/SPI2_SCK
: - R _L/spi_Nss
< N N N
: SRNER RN
4 N NN
PBO-ADC < 80 i
i b4
$ER=3 p
O i‘ =g 0
= ® = |
LORA-ANT % S5 g
s E a = 4
< =8 2
3 =832
T~ =4 o
> -
9 E| = 8
4 §as
g 58 &
n < a
M -
a o
a

Image 5: Recording schematic. Source: Screenshot by the author.

4. Write the Code on the board.

The firmware will be written using the RF-flasher software. The procedure for writing the firmware using RF-flasher is
in the text Firmware Recording and Running Tests.

(

Image 6: Flashing the Firmware. Source: The author.

5. GATTBrowser - APP.

To perform the data communication test with the Smartphone, we need an application that can intermediate this
communication. Therefore, we will use GATTBrowser, a free application that uses the GATT communication protocol. On
your Smartphone, go to “playStore” and install the “GATTBrowser” application. Then open the app and activate the
Bluetooth on your Smartphone, it will scan it to find the BLE devices nearby. In our case it will find the HTLRBL32L
microcontroller, which will be identified as PushButton. In this scenario, the Smartphone acts as the client and the
HTLRBL32L microcontroller, which has the BLE communication protocol, is the server.

r

owser ' scan
PushButton (I
o

Watch 6

RENESAS

Image 7: PushButton. Source: The author.

6. Connecting the Smartphone with SiP HTLRBL32L

Before we proceed, open your serial terminal (Termite) to view the microcontroller data. After this procedure, click on
the button next to the “PushButton” in the GATTBrowser app and the smartphone will start connecting to the HTLRBL32L
microcontroller. It can be seen through Termite, that the microcontroller has successfully made this connection with the
SmartPhone, as shown in image 8.

PushButton PushButton
f 4:C4:FB B30 G AeRs Tl O rerrrste 34 by CompaPhas
Watch 6 LNO) NOT BONDED T T) [e [
[¢
RENESAS RENESAS

Image 8: Connecting the Smartphone with SiP HTLRBL32L. Source: The author.

Once connected, it will display the list of Service and their Characteristic. We can see the Service UUID in the App.

& Services DISCOMNECT £

PushButton
F9:B82:24:C4:FB: 75
= z DONMECTED

IT BONDED

Tn

Generic attribute

Generic access

A ppearance

d Connection Parameters

Properties: Read

a32e5520-e477-112-a9e3-0002a5d59619
2e5520-2477-11e2-29e3-0002a5d59519

rRead Write Withaut

Image 9: Service UUID. Source: The author.

7. Cellular data communication test

In the READ button the user will receive information from the microcontroller, in the Write button the user will send
information to the microcontroller, as shown in image 10.

(

< Characteristic DISCONNECT :

PushButton
FO:B2:24:C4:FB:75 Yo
Status: CONNECTED

NOT BONDED

Read String -

2022/07/08, sex.. 00-58:02

Hello, World!

) as B

Image 10: Mobile phone data communication test. Source: The author.

7.1 Receiving data from the microcontroller.

Start the tests by receiving string information from the microcontroller. To perform this procedure, press the READ
button and the user will receive the following message on his Smartphone, “Hello, World!” As shown in image 11.

(

@ Terniite 3.4 (by CompuPhase) — Vov

COM3 115200 bps, 8N 1, no handshake Settings Clear About Close - B N®d0062%
R

00:58

<« Characteristic DISCONNECT 1

Propertie) Read Write With por
Smng
Hello, World!

Write String

RENESAS

Image 11: READ communication test. Source: The author.

7.2 Sending data to the Microcontroller.

In the Write button the user will send information to the microcontroller. We can type any sentence, for example:
“Manaus-Am”, the microcontroller will receive it through the BLE protocol.

9 Termite 3.4 (by CompuPhase) — x

COM3 115200 bps, 8N 1, no handshake Settings Clear About Close e R WM a62%

o Characteristic DISCONNECT

Read String

197

Hello, World!

)

Hello, World!

Write String

andwidth: 125 coderate: 4/5 Manaus - Am

)2 x., 00:5¢
Manaus - Am
)

Manaus - 2022

Image 12: Writing communication test. Source: The author.

In this tutorial the basics of Bluetooth Low Energy were presented, starting with a practical example using the
HTLRBL32L microcontroller. The idea is to use BLE to send or receive sensor readings from other devices.

References

BLUETOQTH. Intro to Bluetooth Generic Access Profile (GAP). 2022. Available at:
<https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/>. Accessed on july 28th 2022.

ELECTRONICSHUB. How to use BLE in ESP32? ESP32 BLE (Bluetooth Low Energy) Tutorial. 2021. Available at:
<https://www.electronicshub.org/esp32-ble-tutorial/>. Accessed on july 28th 2022.

NOVELBITS. Basics bluetooth low energy. 2022. Available at: < https://novelbits.io/basics-bluetooth-low-energy/ >.
Accessed on july 28th 2022.

https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/
https://www.electronicshub.org/esp32-ble-tutorial/
https://novelbits.io/basics-bluetooth-low-energy/

