EVALUATION BOARD

Development of code to write to the microcontroller

Currently microcontrollers are programmed in high-level languages, such as C/C++ or Java. However, in embedded firmware
programming, the C language is widely used. The reason for this is that C is a language that talks directly to the hardware.
While the Assembly language is closer to the hardware, because its sequence of commands are like machine code that
generates hexadecimal instructions, the C language has structures that are mapped directly into machine instructions.

During the firmware development process, we write a sequence of instructions into the microcontroller's memory through an
Integrated Development Environment (IDE) in an embedded language, such as C, compiling and linking the code modules
with libraries.

1. Cloning a repository

You can review the process of cloning a repository in the Software Development Environments for Microcontrollers
content. In this tutorial we will clone the example project “PushButton_LoRaWAN” available in the HT Micron GitHub
repository through the branch “git clone --single-branch --branch SDK https://github.com/htmicron/htirbi32l.git”. As
seen in the image below.

https://freedev.medium.com/entenda-o-que-%C3%A9-assembly-ed64526cab49

‘3“3' MINGW64:/c/Users/temp/Desktop/SDK-

GW64 ~/Desktop/SDK-
$ git clone --single- branch --branch SDK https: f/g1thub com/htmicron/ht1rb1321.g
TE
Cloning into "htlrb1327"...
remote: Enumerating objects: 1287, done.
remote: Counting objects: 100% (1287/1287), done.
remote: Compressing objects: 100% (782/782), done.
remote: Total 1287 (delta 450), reused 1284 (delta 450), pack-reused O
Receiving objects: 10 (1287/1287), 13.18 MiB | 7.54 MiB/s, done.

Resolving deltas: 100% (450/450), done.

~/Desktop/SDK-
$ |

Image 1: Git Clone. Source: The author.

To view the cloned branch files, type the “LS” command.

o
0" \

$ git clone --single-branch --branch SDK https://github.com/htmicron, 21.g
Nt

ICloning into 'ht1rb1321'...

iremote: Enumerating objects: 1287, done.

remote: Counting objects: 1 1287 /1287), done.

remote: Compressing objects: 100% (782/782), done.

remote: Total 1287 (delta 450), reused 1284 (delta 450), pack-reused 0

Receiving objects: 10 (1287/1287), 13.18 MiB | 7.54 MiB/s, done.

Resolving deltas: 100% (450/450), done.

~/Desktop/

§ 1s
ht1rb1321/

$ cd htlrb1321/

/SDK-/ht1rb132
1
§ 1s
JHTLRBL32L-AT_Commands/ HTLRBL32L_SDK/ README.md

/SDK-/ht1rb132

Image 2: Viewing Files in Windows PowerShell. Source: The author.

2. Project Code

After the code cloning process, use the Wise Studio IDE software to run it. To perform this procedure, open the “File” tab in
Wise Studio, click on “Open projects from file System”. Next click “Directory”, select the downloaded or cloned folder,
and then click Finish.

| B8 import Projects from File System or Archive o X

| Import Projects from File System or Archive

This wizard analyzes the content of your folder or archive file to find projects and impart them in the IDE.

Import source: || I Directory... |I Archive...

type filter text Select All

Deselect All

Close newly imparted projects upon completion

0 & | 3 ~ 4 M -« HILRBL32L Applications > Applications »
Bo= Nova pasta
Working

Add project to working sets

I | oRaWAN TagolQ DashBoard

B pushButton LoRaWAN 30/06/2022

Pasta; PushButton_LoRaWAN

Selecionar pasta

Image 3: Selection of the folder with the cloned project code. Source: The author.

The file will be available in Wise Studio’s “project explorer” tab. Then open the main structure of the code in the

“Application” folder.

* workspace - WIiSE Studio
File Edit Source Refactor
o By vr{EANEBra Yyt r 0y vi®Sgy

Mavigate Search Project Run Window Help

L Project Explarer
&5 HTLRBL32L-PushButton_LoRaWAN
&+ Indudes
v @ Application
% bluenrg_lp_it.c
5 gpio.c
& HT_push_button.c
s lorawan setup.c
% main.c
s rtc.c
& spic
s syscalls.c
S uart.c
& Debug
+ &m Drivers
= Middlewares
5 HTLRBL32L-PushButton_LaRaWAN.cfg
HTLRBL32L-PushButton_LoRaWAN. elf.cfd
HTLRBL32L.Id
Sip htlrbl32).xml
3% HTLRBL32L-PushButton_LoRaWAN_Bluetoot|

. Problems © - < Tasks [Properties

Image 4: Wise Studio Project Explorer. Source: The author.

2.1 How the code works.

The main functionality of the code is to activate the LoraWan communication protocol using a push button. When the
push button is pressed, an interrupt “wakes up” the device and sends a payload in data frequency. This process is very
useful in the loT environment, as most devices need to save power and battery. However, we will show the main files
that deal directly with the LoraWan protocol interrupt through the PushButton. The source code “main.c” initializes all
system functions, we can see in the image below:

A) GPIO initialization

B) Initialization of the UART, it enables the serial communication that will be necessary for the exchange of
information between the FTDi and the computer.

C) Initializes the LoRa Radio.

/* System initialization function */|

if (SystemInit(SYSCLK_64M, BLE_SYSCLK_NONE) l= SUCCESS){
/* Error during system clock configuration take appropriate action */
while (1);

HAL_Init();
IRQHandler_Config(); A
MX_GPIO_Init(); «f—
MX_USART1_UART_INit() ; «fmmmmm— B
#if DEEP_SLEEP_MODE == 1
MX_GPIO_LP_ Init();
#endif
MX_SPI1_Init();
MX_RTC_Tnit();

LORAWAN_init(DEFAULT_REGION) ; C

#if DEEP_SLEEP_MODE == 1
HT_PB_ConfigkakeupIO();
#endif

S
» U MDD

~ v

w oo

5
U P WR D

(=]

printf{"HTLRBL32L - Push Button APP\n");

w

while (1) {

LORAWAN_tick():
HT PB Fsm();

2 L PO D

i

PowerSavelLevels App_PowerSavelLevel_Check(PowerSavelevels lewvel) {
. -

Image 5: LoraWan source code. Source: the author.

2.2 Channels, regions and classes

In the source code “lorawan_setup.c” we can configure the channels, regions and classes according to the needs
of the microcontroller and the region where it is located. Each region of the planet or country has an operation
frequency homologated for LoRa. In Brazil, the standard frequency is 902Mhz - 928Mhz. In the image below the
regions are highlighted.

(

© lorawan_setup.c -
|
2 #include "lorawan_setup.h”
3 #include "lora.h"
4 #include "sx126x.h"
5 #include "sx126x_board.h"”
& #include "utils.h"

-

8 static uint8 t AppDataBuff[LORAWAN APP_DATA BUFF_SIZE];

9

16 static uint8_t global_region;
1

13 static char regions[18][6] = {"AS923", "AU915", "CN47@", "CN779", "EU433", "EUBE8", "KR920", "INBE5", "US915", "RUSBB4"};
1 R,

14 * User application data structure
15 v..'

16 lora_AppData_t AppData = {AppDataBuff, @, 8};
i7

182 /™ Private MaCPQ ——-—-- - oo oo oo o oo ui
19 /* Private function prototypes =-=-==-s=sssssemcsscsccsscmmmcanrenseansnsaenaa¥f

Zi J* ¢call back when LoRa endNode has received a frame*/
22 static void LORA_RxData(lora_AppData_t *AppData);

24 /* ecall back when LoRa endNode has just joined*®/
25 static void LORA_Hasloined(void);

27 f* call back when LoRa endNode has just switch the class*
28 static void LORA_ConfirmClass(DeviceClass_t Class);

3@ /* call back when server needs endNode to send a frame*/
2

31 static void LORA_TxNeeded(veid);

Image 6 - Source code for channels and regions. Source: The author.

2.3 Device classes

Also in the same source code file “lorawan_setup.c”, we can see (image 7) where the “classes” configuration function
is. The LoRa specification works with three types of classes: Class A, Class B and Class C. Normally, all LoRaWAN
devices must implement Class A, while Class B and Class C are extensions of the specification for Class A devices.

e Class A - Bi-directional communication between devices such as sensors and microcontroller with the server.
Fully optimized to reduce power consumption. One Rx1 window is opened when a message is sent.

e Class B - Multiple Rx1 receive windows open. However, at set times.

e Class C - Only two receiver windows are opened.

r

&) lorawan_setup.c

1 static void LORA_RxData(lora_AppData_t *AppData)

switch (AppData->Port)
{

4 case 3:

this port switches the class
if (AppData->BuffSize == 1)
{

switch (AppData->Buff[@])

{

case ©:
LORA_RequestClass(CLASS_A);
break;

¥

case 1:

LORA_RequestClass(CLASS_B);
break;

case 2:

{
LORA_RequestClass(CLASS_C);
break;

}
default:
break;
i
}

179 T
180 case LORAWAN_APP_PORT:

~~~~~~

Image 7: Class source code. Source: The author.



2.3 Application Session Key

The library “lorawandefines.h”, which is located inside the “includes” folder, is intended to implement the
cryptographic element that supports LoRaWAN versions 1.0.x and 1.1.x. The code uses version 1.1.x.

4

1 *lorawandefines.h i
13 #endif

145 /*]
15 | sk o R A R R
16 * 3N o ok o K ok o X

e e 3 ok oK K R R

3 FEEEERRRR R RN E E
18 The crypto-element implementation supports both 1.8.x and 1.1.x LoRaWAN
19 versions of the specification.

28  Thus it has been decided to use the 1.1.x keys and EUI name definitions.
21 The below table shows the names equivalence between versions:

22 R e T —
23 | 1.8.x 1.1.%
24 =========z==z======
25 | LORAWAN_DEVICE_EUI| LORAWAN_DEVICE_EUI |
26 o o e o e - +
27 | LORA LORAWAN_JOIN_EUI |
28 o e e a8 +
L | N/& LORAWAN_APP_KEY |
3 B e +
| LORAWAN_NWK_KEY |
B e e +
| _S_INT_KEY |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ¥
LORAWAN_S_NWK_S_INT_KEY |
____________________________________________ +

LORAWAN_NWK_S_ENC_KEY |

FEEFFEERRERERE R E L F RS FEE KRR R R R R AR A E R R R R R KRR R R R K E R

o S O R R SR SO 0O O O SR R SRR S O OO O 5 O OB RO O 3 0K 3 50 9 5 SR8 00 5 O O 3K 8 6000 O O O O 3o R o R K K
o A R 0 R O K0 o O O R O R
P LY
45
a6e /*|

Image 8: LoraWan library source code. Source: The author.



The LoRaWan protocol, for security, transmits data (payload) encrypted using the 128-bit AES algorithm with a key
known as the “Application Session Key”. Take a look at image 9:

A)  Represents the device (microcontroller) address to the network, works like a “MAC Address” of the device.
B) Used for encryption and decryption of a payload.
C) Normally used to interact between the device and the Network Server.

(

 *lorawandefines.h =
64 * IEEE Organizationally Unique Identifier ( OUI ) (big endian)
65 * \remark This is unique to a company or organization
66 */
67 #define IEEE_OUI exel, exel, exel
68
69¢ /%!

7@ * Mote device IEEE EUI (big endian)
"

72 * \remark see STATIC_DEVICE_EUI comments
*
/

79 #define LORAWAN_DEVICE_EUT {@xDE , @xAD, 6xBE , BxEF , 0xBE,, @xEF,0xDE, axaD} | A\ C

77 #endif
78 // { IEEE_OUI, @xel, exel, exel, exel, exel }

SB'./V\
81 * App/loin server IEEE EUI (big endian)

2 | =
83 #tdefine LORAWAN_JOIN_EUI { exe1, @xel, ex@l, @xe1l, exel, exel, exel, exee }

85e /*!

86 * Application root key B

a7
B—SI#de'Fine LORAWAN_APP_KEY { exi1, exll, exil, exll, exll, exll, ex1l, ex1l, ex1l, ex1l1, exll, lel
89

9@e /*!
91 * Network root key
92 * WARNING: FOR 1.0.x DEVICES IT IS THE \ref LORAWAN_APP_KEY c

93
QLIudefine LORAWAN_NWK_KEY { exi1, exil, @xil, exll, ex1l, @x1l, ex1l, 8x1l, ox11, ex1l, @xil, e*

96 #if( OVER_THE_AIR_ACTIVATION == @ )
97

Image 9: Session keys source code. Source: The author.



Finally, still in the same source code of the “lorawandefines.h” library, (A) we set the data transmission cycle “15000
ms” and (B) we set the Class type, as visualized in image 10 is class A.

= |orawandefines.h
147 =/

148 #ifndef APP_TX_DUTYCYCLE I\
149 #define APP_TX_DUTYCYCLE
en

158

s
wn
s

"

* LoRaWAN Adaptive Data Rate
* @note Please note that when ADR is enabled the end-device should be static

UL
w oW

=
#define LORAWAN_ADR_STATE LORAWAN_ADR_ON
o p

* LoRaWAN Default data Rate Data Rate

* @note Please note that BL is used only when ADR is disabled

~I

#idefine LORAWAN_DEFAULT_DATA_RATE DR_4

el el e
AELENENERET

0 0

* LoRaWAN application port
* @note do not use 224. It is reserved for certification

5 #define LORAWAN_APP_PORT 2

=)
* LoRaWaN default endNode class port

define LORAWAN_DEFAULT_CLASS CLASS_A E;

173e /%]

174 * LoRaWlAN default confirm state

175 =/

76 #define LORAWAN_DEFAULT_CONFIRM_MSG_STATE LORAWAN_UNCONFIRMED_MSG

g /%]
178 = User application data buffer size
180 */

109 #dafimn | ARALIAK ARA NATL DIIEE ©TTE

Image 10: Class and data transmission cycle definition. Source: The author.



In the source code “gpio.c” we can analyze which GPIO is set to receive the push button. In this case, it is GPIO_4.

2 lorawan_setup.c | ls) gpio.c &

s THTE TV W A ke e L ST & T 5
77

78 GPIO_InitStruct.Pin = RADIO_SWITCH_ENABLE_Pin;

79 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

88 GPIO_InitStruct.Pull = GPIO_NOPULL;

81 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ VERY HIGH;

82 HAL_GPIO Init(RADIO_SWITCH_ENABLE Port, &GPIO_InitStruct);
83 }

o0
B

void IRQHandler_Config(void) {
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_ConfigTypeDef EXTI_Config_InitStructure;

o e
N o

o 0

/* Enable GPIOA and GPIOB clock */
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();

0

Vi b wN e ®Wo o

/* Configure PB.4 pin as input floating */
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Pin = GPIO_PIN_4;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);

9
a
g
9
9
9
g
9
9
g
9

O 00~ O

EXTI_Config_InitStructure.lLine = EXTI_LINE_PB4;
EXTI_Config_InitStructure.Trigger = EXTI_TRIGGER_RISING_EDGE;
EXTI_Config_InitStructure.Type = EXTI_TYPE_EDGE;

[y
o0
(=]

HAL_EXTI_SetConfiglLine(&HEXTI_InitStructure, &EXTI_Config InitStructure);
HAL_EXTI_RegisterCallback(&HEXTI_InitStructure, HAL_EXTI_COMMON_CB_ID, (void (*)(uint32_t))RadioOnDiolrq);
HAL_EXTI_Cmd(&HEXTI_InitStructure, ENABLE);

HAL_EXTI_ClearPending(&HEXTI_InitStructure);

Image 11: GPIO source code. Source: The author.



2.2 Build Project

After analyzing the main structure that will be used in this application, right-click on the main project folder and then
click “Build Project”. This operation will compile all the code and consequently will automatically build the binary of
the code.

B8 workspace - T3 1cart bt Macktont CNA RN LTI P22 €N Applications\PushButton LoRaWAN\Inc\lorawandefines h - WIiSE Studio

Fle Edit New Window  Help

= | Go Into »5 v - - - v |t Quick A
L Project Exp Open in New Window  lorawandefines.h &
= HILRBL Show In Altsshifteiy > C-LORADEFINES H_
A Inclu
N " " BUG
¢ Crl+( .
i Appl Ry ! "debug_configs.h"
= Debu
@ Drive ¥ Delete Delete
& Midc Source >
HILE
HILE i
WL Rename... F2 F +
B sio K has been decided to use the 1.1.x keys and EUI name definitions.
sip ki import.. s : o ool = 2l
< {iTLRL ow table shows the namess equivalence between versions:
5 Export..

Clean Project
Relresh F5
Close Project

Close Unrelated Project

Build Configurations >
Build Targets >
Index >
O RunAs >
¢ Debug As 2
Profile As >
Team 5
Compare With >
Restore from Local History,
% Run C/C++ Code Analysis Tasks = Properties
Configure s .0 others
= Resource Path Location Type
£ HTLRBL32 Properties Alt+Enter

Image 12: Build Project. Source: The author.



The “Console” message shows that the Build was finished and that no errors occurred. We can also see that a new
folder called “Binaries” has been created.

m workspace - C\Users\temp\Desktop\SDKhtrbI3ZRHTLRBLIZL SDK\Applications\PushButton LoRaWAN\Inc\lorawandefines.h - WISE Studio
File Edit Source Refactor Mavigate Search Project Run  Window Help

Ll I BryRvBrRigrBSrydrbrorQri®y~ B P
2 Project Explorer % Ok lorawan setup.c | lorawandefinash 12 =5
< s

1F EEEEEAFEAKSEFFEFEEAEEAXEERAERESESES [[ADNTHG SRR AR SRS R SR SRR B RA A A E RS HE S

* Binari 17 o ok ok e ok ok ok ok ok e K ook ok ok o ok ok R R o ok ke kR bk m k=
# % Binaries 5 & 2
18 The crypto-element implementation supports both 1.8.x and 1.1.x LoRakAN
18 versions of the specification.
i@ Application 28 Thus it has been decided to use the 1.1.x keys and EUI name definitions
> & Debug The below table shows the names equivalence between versions:
i Drivers

@ Middlewares
= HTLRBL32L-PushButton_LoRaWAN.cfg
= HTLRBL3Z2L-PushButton LoRaWAN elf.cfg

e

! HTLRBL32LId 7 | LORAWAN_JOIN_EUT
sip_htlrbl 321 xmil + = e
: \ 2¢ | LORAWAI
i# HTLRBL32L-PushButton_LoRaWAN_Bluetooth a

NUWlK_S_ENC_

i1 Problems & Tasks| @ Console 11 - T Properties
CDT Build Console [HTLRBL321-PushButton_| oRaWAN]

LUVURLIE. FELiLC Siie
arm-none-eabi-size -B "HTLRBL32L-PushButton_LoRakAN.elf"
text data bss dec hex filename
98352 372 12356 183586 1943c¢ HTLRBL32L-PushButton_LoRaWaN.elf
Finished building: elf-size
Finished building: HTLRBL32L-PushButton_LoRaWAN.hex

E?:aszaz Build Finished. @ errors, @ warnings. (took :les,z_attms) I

Imagem 13: Arquivo Binario criado. Source: the author.



Additional reading

GIT. Git. 2022. Available at: < https://qgit-scm.com/>. Accessed on july 28th 2022.
GIT-HUB. Git guides. 2022. Available at: < https://github.com/git-quides >. Accessed on july 28th 2022.

LORA-ALLIANCE. About-lorawan. Available at: < https://lora-alliance.org/about-lorawan/ >. Accessed on july 28th 2022.

PREDICTABLEDESIGNS. Introduction to Embedded Firmware Development,2021. Available at: <
https://predictabledesigns.com/introduction-to-embedded-firmware-development/ >. Accessed on july 28th 2022.

THETHINGSNETWORK. Security 2022. Available at: < https://www.thethingsnetwork.org/docs/lorawan/security/ >.
Accessed on july 28th 2022.



https://git-scm.com/
https://github.com/git-guides
https://lora-alliance.org/about-lorawan/
https://predictabledesigns.com/introduction-to-embedded-firmware-development/
https://www.thethingsnetwork.org/docs/lorawan/security/

